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§I Three proofs .

theorem There are infinitely many primes .

Renard the following proofs assume that every integer > I factors (uniquely) into primes .

proofed (Euclid) . Assume there are only finitely many . say per . . . . Pr . Consider
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Wherever this product converges .

If there are only finitely many pines, then it converges for EI . So done by:
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proof's Furstenberg ) Put a topology on Z where the opens are unions of sets of the form
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Note : IN The intersection of any two of these sets is again of this form , so this is a topology .

⑦ Any nonempty open is infinite .

Now assume there are only finitely many primes . soy pre -
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is open ; it is an intersection of finitely mint opens . An element Nes is divisible by no prime. so
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This is a contradiction by 121 D

Renard this is essentially Euclid 's proof . rephrased using topology .

§I p-adic numbers and E
.

Read tf pod is an integer I not necessarily prime) , then every OeNez can be written uniquely as
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This is just the base - p expansion of N
.
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DI Now let p be prime .

Define the ring of p-adic integers by
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where th are given by carrying , possibly infinitely many times .
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Put a topology on Zp by declaring
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to be open . This is Hausdorff , even metric
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but that doesn't matter for this talk
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Renard 27472
, as rings , because , if Neo

,
N -- E.air in base p , then N defines a p-adic integer with the

same expansion .
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and we know how to interpret - N and - l as p-adic integers . hence also
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.

Reet 27 is dense in Bp .

In fact
, every basic open Bar . . . . an. . contains an integer , namely Lie !
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DI let E be the ring
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Renate The Chinese reminder theorem implies that if N=p ,
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This can be upgraded to
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Recall that the product topology on 7¥; is sit
.

the basic opens are

If Ui X If hi , for finite subsets Set
.

We give the this product topology .

Renard DUE as ring,auLa not I. a not 2, a not 3 . .
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and 27 is dense in E .

§I Topological proof , recast .

proof Assume there are only finitely many primes .

Since Zf is open in Ze .

I '-- tht is open in thepi E This is fate if there are infinitely many All
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But 72 is an infinite dense subset of 8
,
so its intersection with any nonempty open is infinite . Contradiction !

Renard Why is this a recasting of proof 3? Well
,
consider the topology 27 gets as a subspace of I .

The basic opens are
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So this is Furstenberg 's topology, and It = the intersection of opens in Z from Furstenberg 's proof.

§1 Relation to Euler 's proof.

Fact One can define a measure up on Zp so that
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Similarly one can define M on I st .
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Euler 's proof tells us 341
-

IO .

But if It were open , it would
have measure 70 .

So Euler 's argument

can be used to give us the desired contradiction in E as well ,


